PRACTICE MID TERM I CALCULUS III

- The use of class notes, book, formulae sheet, calculator is not permitted.
- In order to get full credit, you **must** show all your work.
- Each solution must have a clearly labeled problem number and start at the top of a new page.
- You have one hour and fifteen minutes.
- Do not forget to write your name and UNI in the space provided below and on the notebook provided.

- (1) Write the parametric equations describing the line
 - lying on the plane $\mathbb{P}: x 2y + z = 4$
 - passing through the intersection of the plane \mathbb{P} with the line $L : \vec{r} = \langle 1 + t, 1 t, 2t \rangle$, and
 - perpendicular to line L.
- (2) Let A = (1, 0, 1), B = (3, 1, 0) and C = (3, 2, 2) and D = (-2, -2, 1) be four points in \mathbb{R}^3 .
 - (a) Find the volume of the parallelopiped formed by edges AB, AC and AD.
 - (b) Find the coordinates of the point E opposite to A in this parallelopiped.
 - (c) Find the angle $\angle EAB$.
- (3) Consider the plane $\mathbb{P}: x + y 3z = 1$ and a point P = (2, 1, 0).
 - (a) Find the parametric equations describing the line through P and perpendicular to the plane \mathbb{P} .
 - (b) Find the coordinates of the point Q where this line meets the plane \mathbb{P} .
 - (c) Compute the length of the line segment PQ.
 - (d) Compute the distance between the point P and the plane \mathbb{P} directly (using the formula) and verify your answer from part (c).
- (4) True/False. Justify your answer with a proof if true, or a counterexample if false.
 - (a) If $\vec{v} \cdot \vec{w} = 0$ then either $\vec{v} = 0$ or $\vec{w} = 0$.
 - (b) If $\vec{v} \times \vec{w} = 0$ then \vec{v} and \vec{w} must be parallel.
 - (c) A pair of lines is either parallel or intersect in a point.

(d)
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

(e) $|\vec{a} + \vec{b}| = |\vec{a}| + |\vec{b}|$.

(5) Consider the equation $z = ax^2 + y^2$.

- (a) Sketch the traces for a = -1, 0, 1.
- (b) Sketch the surface for a = -1, 0, 1.
- (c) Describe how the surface changes when a approaches 0 from the left and from the right.
- (6) Find the equation of the plane which contains the following two parallel lines:

$$x = 2 - t$$
 $y = 3 + 2t$ $z = 1 + t$
 $1 - x = \frac{y - 4}{2} = z - 3$

- (7) Let \vec{v} be a non-zero vector.
 - Prove that $\operatorname{Proj}_{\vec{v}}(\vec{u}) = 0$ if, and only if \vec{u} is orthogonal to \vec{v} .
 - Prove that $\operatorname{Proj}_{\vec{v}}(\vec{u}) = \vec{u}$ if, and only if \vec{u} is parallel to \vec{v} .