SOLUTIONS TO HOMEWORK 5

Sophia Cornell March 6, 2020

Problems Assigned

• 12.6: 28, 30, 32, 34, 36

• 13.1: 2, 6, 11, 22-24, 26, 42

12.6, #28

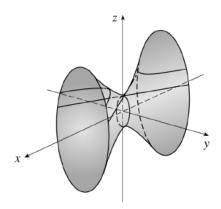
The xy-trace is the parabola $y = x^2$ The yz-trace is the parabola $y = z^2$

The only shape with these characteristics is V.

You can also recognize from the chart on page 837 of the textbook that this is the equation for a hyperbolic paraboloid.

12.6, #30

The elliptical traces in x = k grow bigger as $\lfloor k \rfloor$ increases. This suggests that we have a hyperboloid in the x-direction. The fact that the ellipse at k = 0 is not a point tells us that it is a **hyperboloid of one sheet**, rather than two. The z = k traces support this.



12.6, #32

Rewrite the equation in standard form.

$$4x^2 - y + 2z^2 = 0$$

$$x^2 - \frac{y}{4} + \frac{z^2}{2} = 0$$

$$x^2 + \frac{z^2}{2} = \frac{y}{4}$$

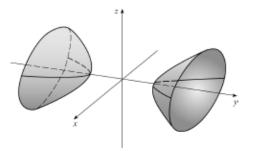
This is a **elliptic paraboloid along the** y**-axis, with vertex** (0,0,0)**.** See the chart on page 837 of the textbook.

12.6, #34

Rewrite the equation in standard form.

$$y^{2} = x^{2} + 4z^{2} + 4z^{2}$$
$$-x^{2} + y^{2} - 4z^{2} = 4$$
$$-\frac{x^{2}}{4} + \frac{y^{2}}{4} - z^{2} = 1$$

This is a **hyperboloid in two sheets along the** y**-axis, with vertex** (0,0,0). See the chart on page 837 of the textbook.



12.6, #36

Rewrite the equation in standard form. This one is a little trickier and requires completing the square for x and z. Be especially careful with the negative sign around the z terms.

$$x^{2} - y^{2} - z^{2} - 4x - 2z + 3 = 0$$

$$(x^{2} - 4x + c) - y^{2} - (z^{2} + 2z + d) - c + d + 3 = 0$$

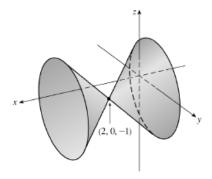
Complete the squares and find that c = 4, d = 1

$$(x^{2} - 4x + 4) - y^{2} - (z^{2} + 2z + 1) - 4 + 1 + 3 = 0$$

$$(x - 2)^{2} - y^{2} - (z + 1)^{2} = 0$$

$$(x - 2)^{2} = y^{2} + (z + 1)^{2}$$

This is a cone in the x-direction, with vertex (2, 0, -1). See the chart on page 837 of the textbook.



13.1 #2

Let us examine the domain constraints of each part of the vector.

X-Coordinate

The domain of cost is all real numbers.

Y-Coordinate

The natural log function has a domain of $(0, \infty)$.

(To understand why, consider that $log_e x = y$ can be rewritten as $x = e^y$. Since e is a positive number, e^y has to be greater than 0 and thus, so does x.)

This gives us that t > 0

Z-Coordinate

The denominator cannot be equal to zero, so $t \neq 2$.

Putting it together

The constraints together give us that the domain of r is $(0, 2) \cup (2, \infty)$.

13.1 #6

X-Coordinate

Use L'Hospital

$$\lim_{t \to \infty} t e^{-t} = \lim_{t \to \infty} \frac{t}{e^t} = \lim_{t \to \infty} \frac{1}{e^t} = 0$$

Y-Coordinate

Use the rules for limits of polynomials at infinity. (If you want to brush up on these, look at http://tutorial.math.lamar.edu/Classes/CalcI/LimitsAtInfinityI.aspx)

In this case,
$$\lim_{t \to \infty} \frac{(t^3 + t)}{2t^3 - 1} = \lim_{t \to \infty} \frac{1 + \frac{1}{t^2}}{2 - \frac{1}{t^3}} = \frac{1 + 0}{2 - 0} = \frac{1}{2}$$

Z-Coordinate

First divide the top and bottom of the fraction by $\frac{1}{t}$, then use L'Hospital's rule again.

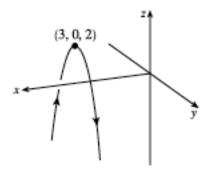
$$\lim_{t \to \infty} t \sin\left(\frac{1}{t}\right) = \lim_{t \to \infty} \frac{\sin\left(\frac{1}{t}\right)}{\frac{1}{t}} = \lim_{t \to \infty} \frac{\left(-\frac{1}{t^2}\right)\cos\left(\frac{1}{t}\right)}{\frac{-1}{t^2}} = \lim_{t \to \infty} \cos\left(\frac{1}{t}\right) = 1$$

The limit is $\langle 0, \frac{1}{2}, 1 \rangle$

13.1 #11

The parametric equations are x = 3, y = t, $z = 2 - t^3$. Eliminate the parameter to find $z = 2 - y^3$, and x = 3. The vertex is (3, 0, 2).

Don't forget to note the direction in which *t* increases.



13.1 #22

Since $x = \cos(t)$, $y = \sin(t)$, all x and y points will be on the cylinder $x^2 + y^2 = 1$. The possibilities are I, IV and VI. As t increases, z approaches 0. **Therefore**, it is VI.

13.1 #24

Since $x = \cos(t)$, $y = \sin(t)$, all x and y points will be on the cylinder $x^2 + y^2 = 1$. The possibilities are I, IV and VI. Since $z = \cos 2t$, there are negative z-values and the curve repeats itself. Therefore it must be I.

13.1 #26

Since $x = \cos^2 t$, $y = \sin^2 t$, and $\cos^2 t + \sin^2 t = 1$, all points will be on plane where x + y = 1. Since x and y are periodic, and z increases with t, **this is III.** (The graph in the textbook is hard to see.)

13.1 #42

Whenever x and y have the equation of a circle with radius r, try parametrizing using $x = r(\cos t)$, $y = r(\sin t)$.

In this case, $x = 2(\cos t)$, $y = 2(\sin t)$. Therefore,

$$Z = xy = 2(\cos t)2(\sin t) = 4\cos(t)\sin(t) = 2\sin(2t)$$

with the last equality following from the identity $\sin 2t = 2\sin t \cos t$.

So the parametric equations are

$$x = 2(\cos t)$$

$$y = 2(\sin t)$$

$$z = 2\sin(2t)$$

And the vector function is

$$r(t) = 2(\cos t)i + 2(\sin t)j + 2\sin(2t)k$$

With $0 \le t \le 2\pi$